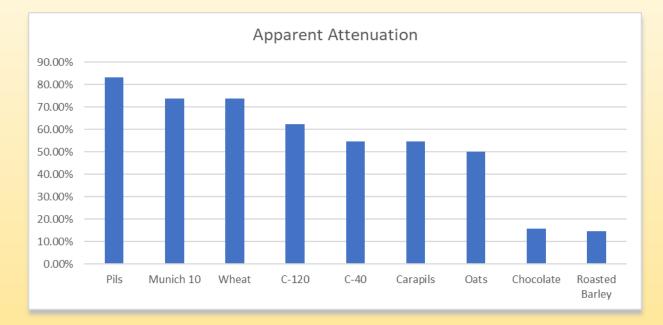
Attenuation Factors

Presented by Mick Spencer

Malt Wort Carbohydrates

Glucose			
Fructose	Completely fermentable by Ale and Lager Strains		
Sucrose			
Maltose			
Maltotriose	Partially fermentable by most Ale and Lager Strains (% depends on strain		
Higher Dextrins	Not fermentable by most Ale and Lager Strains		

- The basic fermentability of a wort depends on the proportions of the carbohydrates.
 - Less Maltotriose and/or less Higher Dextins means a more fermentable wort.


Basic Attenuation Factors

- Wort Fermentability (carbohydrate proportions), driven by...
 - Grain Bill and Other Fermentables
 - Mash Temperature
 - Mash Length
- Yeast Strain

Grain Bill and Other Fermentables

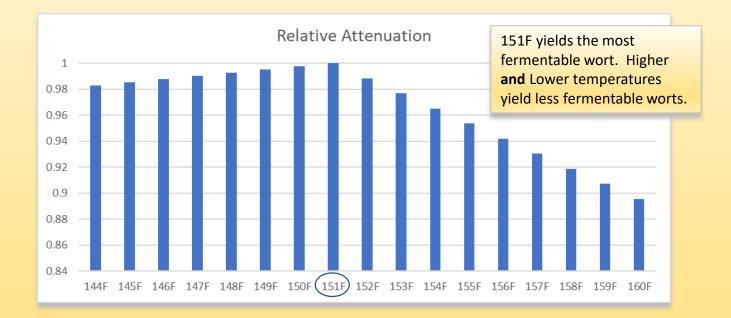
- Various malts and grains will, all else being equal, yield worts with different fermentabilities.
 - Example: Pilsner is more fermentable than Crystal Malts
- Simple Sugars are completely fermentable
- •Lactose and Maltodextrin are essentially unfermentable

<u>Grain Data</u>

Lightly kilned malts tend to be more fermentable than highly kilned/roasted malts

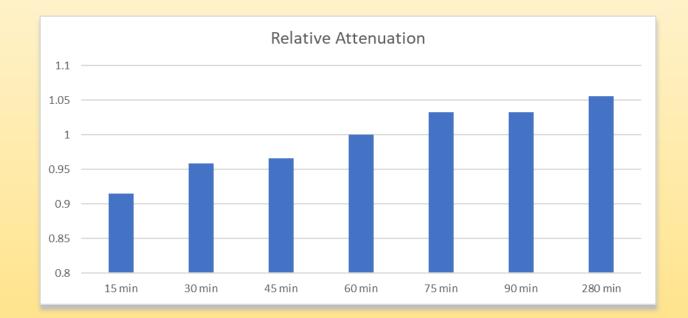
151F, 60 Minute Mashes, derived from Greg Doss' data

Mash Temperature


Q: TRUE or FALSE?

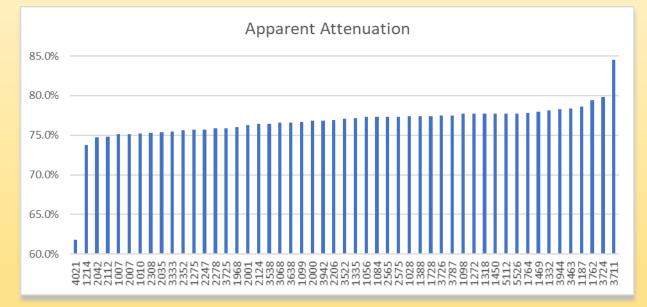
"Higher mash temperatures make a less fermentable wort than lower mash temperatures."

Mash Temperature (cont.)


A: It depends on what you mean by higher and lower.

Single Infusion 60 Minute Mashes, all Pilsner grist. Derived from Kai Troester's data, with slopes fitted by Matt Kahn. Normalized to 1 max.

Mash Length


Longer Mash Times yield more fermentable worts.

Various mash temps. Pilsner grist. Derived from Kai Troester's data and Greg Doss' data, normalized to 1 at 60 minutes.

<u>Yeast Strain</u>

Relative ability to ferment Maltotriose is *strain dependent*, accounting for most differences in overall attenuation.

Light DME fermentation. Values interpreted from Greg Doss' pictorial graph.

<u>Summary</u>

- Basic Wort fermentability is determined by the mix of carbohydrates. The mix is driven by...
 - Grain Bill and Other Fermentables
 - Lightly kilned malts -> more fermentable
 - Mash Temperature
 - 151F yields the most fermentable worts
 - Mash Length
 - Longer Mash -> more fermentable
- Ale/Lager yeasts ferment all simple sugars and some variable amount of Maltotriose, depending on strain. *The amount of Maltotriose fermented accounts for most differences in attenuation by strain.*

"More Fermentable" ... less Maltotriose and/or less Higher Dextrins.

Attenuation Prediction in Brewing Software

	Factors Considered in Predicting Attenuation				
Software	Yeast Strain	Grain Bill	Mash Temp	Mash Length	
BeerSmith	V		\checkmark	\checkmark	
BrewCipher	V	\checkmark	\checkmark	\checkmark	
BrewTarget	\checkmark				
QBrew					

Further Reading

"Exploring Attenuation" by Greg Doss, 2012

http://www.homebrewersassociation.org/attachments/presentations/pdf/2012/1616-04%20Attenuation%20-%20Gregg%20Doss.pdf

"Evaluation of the Effect of mash parameters on the limit of attenuation and conversion efficiency in single infusion mashing" by Kai Troester, 2008

http://braukaiser.com/documents/Effects_of_mash_parameters_on_attenuation_and_efficiency.pdf

